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Abstract--This paper describes a PLL (Phase-Locked Loop) 

based harmonic estimation system which makes use of an 
analysis filter bank and multirate processing. The filter bank is 
composed of bandpass adaptive filter. The initial center 
frequency of each filter is purposely chosen equal to harmonic 
frequencies. However, the adaptation makes possible tracking 
time-varying frequencies as well as inter-harmonic components. 
A down-sampler device follows the filtering stage reducing the 
computational burden, specially, because an undersampling 
operation is realized. Finally, the last stage is composed by a PLL 
estimator which provides estimates for amplitude, phase and the 
apparent frequency of input signal. The true values of 
frequencies are obtained from the apparent frequency using 
simple algebraic equations. Simulations show that this approach 
is precise and faster than other PLL structures. 
 

Index Terms--PLL, Time-varying harmonic estimation, 
multirate signal processing. 

I.  INTRODUCTION 

ITH the increased application of power electronics, 
controllers, motor drives, inverters, and FACTS devices 

in modern power systems, distortions in line voltage and 
current have been increasing significantly. These distortions 
have affected the power quality of the power system and to 
maintain it under control the monitoring of harmonic and 
inter-harmonic distortion is an important issue [1]-[3]. 

The DFT (Discrete Fourier Transform) is a suitable 
approach for estimate the spectral content of a stationary 
signal, but it loses accuracy under time varying conditions [4] 
and, as a result, other algorithms must be used. The Short 
Time Fourier Transform (STFT) can partly deal with time 
varying conditions but it has the limitation of fixed window 
width chosen a priori and this imposes limitation for the 
analysis of low-frequency and high-frequency non-stationary 
signal at the same time [5]. 
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The IEC standard drafts [6] have specified signal 

processing recommendations and definitions for harmonic and 
inter-harmonic measurement. These recommendations utilize 
DFT over a rectangular window of exactly 12 cycles for 60 Hz 
(10 cycles for 50 Hz) and frequency resolution of 5 Hz. 
However, different authors [7], [8] have shown that the 
detection and measurement of inter-harmonics, with 
acceptable accuracy, is difficult to obtain using the IEC 
specification. 

Unlike the previous methods, that follow the IEC standard, 
others techniques based on Kalman filter, adaptive notch filter 
or PLL approaches have been applying in harmonic and inter-
harmonic estimation. The main disadvantage of Kalman filter 
based harmonics estimation is the higher order model required 
to estimate several components.  

In [3], the EPLL (Enhanced Phase-Locked Loop) [1] is 
used as the basic structure for harmonic and inter-harmonic 
estimation, and several of such sections are arranged together. 
Each one is adjusted to estimate a single sinusoid waveform. 
The convergence takes about 18 cycles, but it can take more 
than 100 cycles for higher harmonic frequencies, mostly if 
there is a fundamental frequency deviation. 

In [9], a new multi-rate filter bank structure for harmonic 
and inter-harmonic extraction is presented. The method uses 
EPLL as estimation tool in combination with sharp bandpass 
filters and down-sampler devices. As a result, an enhanced 
and low computational complexity method for parameters 
estimation of time-varying frequency signals is attained. 

This work presents a new version of the proposed method 
in [9]. This new version uses the concept of apparent 
frequency and the undersampling principle. These concepts 
are correlated with each other. In addition to reducing the 
computation effort of the overall estimator, they guarantee that 
robust structures can be implemented in fixed point 
processors. 

This paper is organized as follows: Section II presents 
some concepts about digital filter bank. Section III describes 
the multirate processing, the concepts of undersampling and 
apparent frequency. Section IV describes the proposed 
structure and the recursive equations of the PLL method [1]. 
Section V presents numerical results. Finally, in Section VI, 
some concluding remarks are stated. 
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II.  DIGITAL FILTER BANK 

A digital filter bank [10] is a collection of digital bandpass 
filters with either a common input (the analysis bank) or a 
summed output (the synthesis bank). The object of discussion 
in this section is the analysis bank. 

The analysis filter bank decomposes the input signal x[n] 
into a set of M subband signals y1[n], y2[n],…, yM[n], each one 
occupying a portion of the original frequency band. Fig. 1 
shows a typical analysis filter bank. 

 

 
 

Fig. 1. A typical analysis filter bank 
 
In this work, the filter bank differs from traditional filter 

banks found in the literature [10]. Specially, bandpass filters 
split the input signal into the spectrum. These filters are 
conventional parametric bandpass filters [11] given by 
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The above transfer function has a narrow bandwitdh, when 
the poles are a pair of complex conjugate near the unit circle. 
The parameter α controls this proximity defining the 3dB-
bandwith of the filter. The maximum magnitude value of (1) 
occurs at discrete frequency ω0 which is related with β, by the 
expression β=cos(ω0). The magnitude response of (1) is 
plotted in Fig. 2 for the band pass centered at fundamental 
frequency (60 Hz) and some of its harmonics. Solid lines are 
for second order filter of (1) while dashed lines show the 
response for a cascade structure of two second order filters. 

 

 
 

Fig. 2. Magnitude Responses of the Bandpass Filters of the Analysis Bank 
 
Although the parameter α near unit produces a sharper 

magnitude response, it increases the transient response time. 
This fact is very important because the converge time of the 
estimator is proportional to the duration of the transient 

period. For example, using (1) with α=0.98 and an input 
signal of 60Hz with 128 points per cycle, the transient 
virtually decays at about four cycles. 

III.   MULTIRATE PROCESSING 

The two basic components in sampling rate modification 
are: the down-sampler, to reduce the sampling rate; and the 
up-sampler, to increase the sampling rate [11]. The block 
diagram representation of these two components is shown in 
Fig. 3. The down-sampler will be described in this section. 

 

 
 

Fig. 3. (a) Block diagram representation of a down-sampler. (b) Block 
diagram representation of an up-sampler 

 
A down-sampler with a down-sampling factor M, where M 

is a positive integer, creates an output sequence y[n] with a 
sampling rate M times smaller than the sampling rate of the 
input sequence x[n]. In other words, this device keeps every 
Mth sample of the input signal, removing the others M-1.   

The input-output relationship can be written as 
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Equation (3) implies that the DTFT (Discrete-Time Fourier 
Transform) of the down-sampled output signal y[n] is a sum 
of M uniformly shifted and stretched versions of DTFT of 
input x[n], scaled by a factor 1/M. It can be shown that 
aliasing due to down-sample operation is absent if and only if 
the input signal is band-limited to ±π/M.  

Fig. 4 illustrates an example of down-sample effect in the 
frequency domain by direct application of (3). The solid curve 
is the spectrum of the input signal. With M=4, the dashed line 
is the shifted and stretched spectrum of output signal. It can be 
seen that the peak value has been moved from 0.1563 radians 
to 0.6250 radians, while the frequency remains equal to 300 
Hz.  

An alternative and simple interpretation of (3) can be done 
assuming a single sinusoidal signal at input. Fig. 5(a) shows a 
circle where the sinusoidal component of frequency f is 
correctly placed with an angle θ=(f/fN)⋅π radians, where fN is 
the Nyquist frequency. After down sampling with a factor M, 
the input, exhibits a new angle position: θM=Mθ, as shown in 
Fig. 5(b). 

There are some singularities to be considered here. Firstly, 
if θM<π the output has the same frequency in Hertz as its 
input, like in Fig. 4. Secondly, if π<θM<2π the output was 
obtained by undersampling [11] the input, what means that 
sampling theorem was not attended. In this case it is necessary 
to find the value of the output frequency f’, called the apparent 
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frequency, by analyzing the angle 2π-Mθ  and the new 
Nyquist frequency. This is illustrated in Fig. 5(b). Finally, if 
θM>2π, an undersampling was performed again and the full 
revolutions must be discounted. In this case it is necessary to 
find the value of the apparent frequency f’ by analyzing the 
angle Mθ-2π and the new Nyquist frequency. 

 

 
 

Fig. 4. Effect of down-sample operation in frequency domain 
 

 

 
 

Fig. 5. Alternative interpretation of down-sample effect in a single sinusoidal 
signal (a) Original position of component with frequency f. (b) Position of 
component after down-sample operator 

IV.  PROPOSED STRUCTURE 

Fig. 6 shows the proposed structure to harmonic estimation. 
Fifteen bandpass filters compose the filter bank., Each 
bandpass filter has been previously designed with an initial 
central frequencies at the fundamental power frequency or one 
of the harmonic frequencies. The input signal x[n] has ideally 
a frequency of f0=60 Hz and the sampling rate used is 
fS=128⋅f0. 

After filtering stage, the down-sampler device reduces the 
sampling rate, performing the undersampling of yk[n] for 
k=5,6,…,15, according Table I. Here we point another 
difference between this filter bank structure and that 
commonly found in literature: the down-sampling factors are 
not equals. There are many possible values of Mk. Table I 
shows typical values used for simulation and their effects in 
changing frequency of input signal yk[n]. 

We can apply this understand to a row of frequencys given 
in Table I. For example, the 9th harmonic sequence y9[n] 
passed through a down-sampler device with factor M9=16 
results in an output sequence v9[n] with apparent frequency 
equals to 60 Hz.  

 

 
 

Fig. 6. Proposed structure for harmonic estimation 
 

TABLE I 
TYPICAL VALUES FOR DOWN-SAMPLING FACTOR AND ITS EFFECTS IN 

CHANGING FREQUENCY OF INPUT SIGNAL 
 

Frequency (Hz) Frequency (Hz) k Mk yk[n] vk[n] 
k M

k yk[n] vk[n] 
1 16 60 60 9 16 540 60 
2 8 120 120 10 11 600 98.18 
3 16 180 180 11 16 660 180 
4 12 240 240 12 12 720 80 
5 16 300 180 13 16 780 180 
6 14 360 188.57 14 15 840 184 
7 16 420 60 15 16 900 60 
8 14 480 68.57 - - - - 

 
Finally, the last stage is the estimator stage. This is 

composed by the Enhanced-PLL (EPLL) system [1], which is 
responsible to extract three parameters from its input signal 
vk[n]. These parameters are the magnitude, the frequency 
(apparent frequency) and the total phase, that is 

[ ]Tkkkk nnnAne ][ˆ][ˆ][ˆ][ˆ φω=       ( 4 ) 

The EPLL discrete-time recursive equations are: 
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where μ1, μ2 and μ3 are constants that determine de speed of 
convergence, TS is the sampling period and ek[n] is the error 
signal given by 

])[ˆsin(][ˆ][][ nnAnvne kkkk φ−=      ( 6 ) 

From Fig. 6 it can be seen that the estimated frequency of 
each EPLL block is used to update its respective bandpass 
filter. There are many strategies to do this and here we chose 
to update always when the index time n is a multiple of a 
constant J. 

V.  SIMULATIONS RESULTS 

This section presents the performance of proposed method 
under a variety of conditions applied to the input signal. 
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Simulations results are also compared with those presented in 
references[1]-[3]. A cascade structure of two filters (1) was 
used with α=0.98. The EPLL constants μ1, μ2 and μ3 are  
300TS, 500TS and 6TS, respectively. 

A.  Presence of harmonics 

This case shows the behavior of the system when the input 
is composed by the fundamental with odd harmonics  
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Fig. 7 shows results of the amplitude estimation. Unlike 
DFT methods, in which steady-state occurs in one cycle, Fig. 
7(a) shows that steady-state is approximately reached in 5 
cycles. Although slower than DFT, this result is faster than the 
one related in [3]. This is mostly due to the use of the 
bandpass filters, which permits to increase gains μ1, μ2 and μ3 
without increasing the steady-state error. Fig. 7(b) shows a 
zoom in the estimation of harmonics components. 

B.  Presence of additive White Gaussian Noise 

In this case it is evaluated the behavior of the system when 
the input signal is corrupted by a zero-mean White Gaussian 
additive noise, n(t), as 

( ) ( ) ( )tntVtx M += 0sin ω         ( 8 ) 

Fig. 8 shows results of amplitude estimation for input 
signal of (8) and a signal-to-noise ratio (SNR) equal to 15dB. 
The solid line is the output of the EPLL block and dashed line 
is the output of a moving-average filter (MAF) used to smooth 
the estimative. It can be noted that transient time does not 
increase significantly when using the MAF. 

Since the noise is a random signal, every simulation will 
result in a particular estimation curve that has the average 
amplitude tending towards VM (or, equivalently, 1p.u.). An 
important analysis is performed by obtaining the relation 
between the error of estimated amplitude versus the SNR. This 
is achieves by making several simulations for each value of 
SNR. The result is shown in Fig. 9. 

Comparing with results obtained in [2], it can be seen that 
the proposed method presents practically the same 
performance. While the error in [2] for SNR=10dB is 4%, 
here the error for this value of SNR is close to 5% for the 
EPLL output and 3.5% for the AMF output. However the 
convergence time in our simulations remains about 5 cycles. 

 

 
 

Fig. 7. Amplitude estimation for a signal corrupted with harmonics (a) Total 
time simulation; (b) zoom at the steady state harmonic estimation 

 

 
 

Fig. 8. Example of amplitude estimation for a signal corrupted with noise. A 
moving average filter is used to improve estimation reducing the error 

 
 

Fig. 9. Relationship between Amplitude Error and SNR  
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C.  Disturbance in amplitude 

 An important situation for which the system must be 
tested occurs when the amplitude of the signal varies. Here the 
signal is assumed to be composed by fundamental, odd 
harmonics and White Gaussian noise (SNR=40dB), 

( ) ( ) ( ) ( )tntkV
k
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k

MM ++= ∑
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15

3
00 sin
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sin ωω    ( 9 ) 

The total time simulated is 1.0 s. At 0.5 s the amplitude of 
the signal is reduced to 4/5. Fig. 10 shows the amplitude 
estimation curves. The transitory response due to decrease in 
amplitude extinguish in about 5 cycles as well as the transitory 
response of the beginning of simulation. The error observed in 
the simulations was less than 1% for the fundamental 
component and it increases for the high order components 
reaching nearly 2%.  

 

D.  Presence of inter-harmonic 

This case discusses the system behavior when an inter-
harmonic is added to the fundamental component,  

( ) ( ) ( )tkV
k

tVtx MM 00 sin
1

sin δωω +=     ( 10 ) 

The parameter δ is the frequency deviation of the kth 
component. Fig. 11 shows the estimated frequency for δ=1.15 
and k=3, which correspond an inter-harmonic added to 
fundamental of 207Hz. 

Basically, there was a slight increase in the transitory 
response, but with 9 cycles the frequency estimated value is 
within the error band of 2%. It was observed a slight increase 
to the transitory response of estimated amplitude too. This is 
due to the adaptive characteristic of the filter. 

 

 
 

Fig. 10. Performance of the system for a step change in amplitude of input 
signal 
 

E.  Disturbance in frequency 

This case deals with change in the frequency of the input 
signal, that is: 
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Fig. 11. Frequency tracking of an inter-harmonic component 
 
 The total duration of the simulation is 2.0 s. At 1.0 s the 

fundamental frequency jumps to 61 Hz. This implies the kth 
harmonic frequency is shifted to fk=k⋅60+k. Fig. 12 presents 
results for this environment. Fig. 12(a) shows the frequency 
deviation (k) for each harmonic while Fig. 12(b) shows the 
effect of a step change in frequency on the amplitude 
estimation. From Fig. 12(a) it can be seen that transitory 
response of frequency estimation remains practically at about 
5 or 6 cycles, considering a 2% band error. This response is 
faster than that related in [3]. 

 

 

 
 

Fig. 12. Frequency tracking for a step change of 1 Hz in fundamental 
frequency (a) Frequency deviation, (b) Amplitude estimation 

 

F.  Flicker 

Finally, this case deals with voltage fluctuations, that is, the 
disturbance referred as Flicker, 
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( ) ( )[ ] ( ) ( )tnttVtx M ++= 0sin2sin05.01 ωπ    ( 12 ) 

Equation (11) shows that amplitude of input signal varies 
with a sinusoidal frequency of 1Hz and the maximum 
amplitude is 5% of fundamental amplitude. This signal is 
plotted in Fig. 13(a). Fig. 13(b) presents the behavior of 
estimator. It can be seen that variations on amplitude are 
detected, with a very small delay. Moreover, estimated 
frequency is not affected significantly. 

 

 

 
 

Fig. 13. Response of the method for a voltage fluctuation (Flicker) 
environment (a) Input signal, (b) Estimated Amplitude 

 

G.  Comparative computational effort 

The computational effort between the new approach and 
the approach presented in [3] (single rate) is compared in 
terms of number of multiplication, addition and table search 
(functions sin and cos). The total operation number for 
processing one cycle, i.e. 128 samples, is presented in Table 
II. To obtain these numbers is necessary take into account the 
down sampling factor used in Table I and the number of 
operation in the band-pass filter and EPLL estimator. Note 
that the computational effort for the multirate approach is 
greater than the approach of [3] only for the number of adds. 
However, the multirate approach needs only 82% of multiplies 
and 7% of table search required for the approach of [3]. It is 
important to highlight that the EPLL analyzed in this work did 
not include the extras filters as proposed in [3] to smooth the 
estimates. If these filters were included the computed data in 
Table II would be still more favorable to the propose method. 

 
 

TABLE II 
NUMBER OF OPERATIONS REALIZED WITHIN ONE CYCLE OF  FUNDAMENTAL TO 

ESTIMATE UNTIL 15TH HARMONIC 

 Adds Multiplies Table Search 
Single Rate 9600 15360 3840 
Multirate 14125 12616 274 

VI.  CONCLUSIONS 

This paper presents an improved structure of PLL based 
harmonic estimation [9]. It has been shown that parameters of 
a high order harmonic can be extracted performing an 
undersampling of this high frequency signal. The frequency 
estimated is an apparent frequency that can be converted to its 
actual value using algebraic relations. The simulations results 
have shown that the increase in transitory response was not 
significant. The computational effort is reduced compared 
with [3] and previous structure [9]. Finally, the fact that PLL 
estimates an apparent frequency, lower than 240 Hz, makes 
the implementation in a fixed point DSP-based system more 
robust. 
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